CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 13 — BRNNSs; Applications of (B)RNNs: POS Tagging, Named Entity Recognition;

Embeddings Revisited
I

N
RS @ N g N

7 AN l

= \ 2N\

A S WX X7 R

\‘%‘;‘?}M}' ' R
NZEXAA LA AN

\"“"‘ XA NN
COARNAINE NEARRY
LAARR XRY

2’ AN 0\ 7

I7 AN AN\ '
o gl @/ —

bt
)
-
L33
—
=
=
o
=

Review: RNN Architectures

Sequence-to-Sequence Vector-to-Sequence
Yo Yoo Yo Yo Y Yoo Yoy Yo Yo
| R S S A i 4
- > > | >
T T T T 1
o *n Xa Xe X X0,
Sequence-to-Vector: Encoder-Decoder Combination ‘
_Encoder .. Decoder
\;(3) ' ' \;<0> Yo Y?’(z)i
}_»{ }—b{ }—P‘ ‘ M E context vector E)_»{ }_»{ !
F 1T} i
Xoo Xy X2 Xg Xo X 5

- ——————— N

Review: RNN Architectures

Today we’ll focus on the Sequence-to-Sequence model, looking at

o BRNNs

o Application 1: Part of Speech (POS) Tagging and Named-Entity-
Recognition

o Application 2: Generative Language Models

£ttt
I I

Bidirectional Recurrent Neural Networks (BRINN's)

Two RNNs may be combined #

to look at the sequence in the FoRaid B
forward and backward — —
direction at the same time! g g
_ “““ = j e
R R s A s IR LI g s, <l I LI s g
Y4 Yo Y3 Yn

’H‘ ’—8‘\ concatenated ’H.
outputs

[4[;]-— RNN 2 ——)

([L— RN 1

Ty 5

QT NNl A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

Bidirectional RNNs make TWO separate passes through the input sequence,
storing the activations from the first pass for the second pass.

—H'] /.H‘ "H‘ concatenated .H‘
outputs
These passes
happen [Q- RNN 2 H—
simultaneously,
but let’s RNN 1
consider them U_—k 1!
one at a time. |
\8 \@ Xa Xn —

QPO NEY A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the l
backwards

pass th rough /.8‘ concatenated)
the input outputs
sequence.

! EQ- L,]‘ [RNN 2 L
Calculate the
activation U‘_ 1 RNN 1
vector for the

last backward \ X
unit. ; b ¥

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the l
backwards

Pass through /.8‘ concatenated U \
the input outputs

sequence.

Continue (lg‘ Q}

through the (L 1 RNN1——
sequence)

backwards. \H \9 " @
1 3 n-1

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

—

RNN2 — H—[}H— ¢

=]

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the l
backwards

pass through »H‘ concaldnated |} ”
the input outputs

sequence. :)
i) RNN_p 0
Continue
through the U_— 1 RNN 1
sequence)

backwards. \H \9 " H
1 3 0

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the l
backwards

pass through /.8‘ U concagnated U)
the input outputs
sequence.

! EQ- L RN H— 0
Continue
through the U_— 1 RNN 1
sequence)

backwards. \H \9 " U
1 3 0

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the
backwards

pPass through /.8‘ []" U concagnated U :
the input ,->U outputs

sequence.

Continue @ L*}

through the U_— 1 RNN 1
sequence

backwards. \H \9 }
1 "3 o

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

<4

RNN 2 g

> |

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the l
backwards

pPass through /.8‘ []" U concagnated U :
the input ,->U outputs

sequence.

e [RNN 2 0

Continue

through the
sequence U_—*

backwards. \H

] RNN 1

Y ,.

ITTICENE] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

First let’s
consider the l
backwards

pass through »8‘ v [] concaldnatea |] ”
the input ‘b}] ~{ outputs »H‘
sequence. ,

&’j- L,]‘ [RNN 2 0
Continue
through the U_—] RNN 1

sequence)
backwards. \}, \9
1 n

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

The
backward
pass
activations Dﬁ Q« Q‘ U concagnat 5 U L\'«
form one part —~] ~] = outputs]
of the full
activation L*} | RNN 2
vector.
(Lk] RNN 1

H § ¢ ~

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

Y1

!
At the same ‘) ,
time, the [/.8‘ []" U conca@nated U .B’
forward pass P-U}] ~(] outputs
has
calculated its [_|;__]< L;|< RNN 2 o 0
activations.

o—TtLE RNN 1
—\T,‘I] \9 X3 n

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

Y1 Yo

! I
At the same ‘ ‘ ,
time’ the [U‘ U conca@nated U .B’
forward pass P-U}] ~8‘ ~(] outputs
has
calculated its [_|;__]< L;|< RNN 2 o 0
activations.

g |
(L\ & RNN 1

LI ,.

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

Y1 Yo Y3

! I !
At the same ‘ ‘ |
time’ the [[:]" U conca@nated U .B’
forward pass P-U}] ~8‘ ~{] outputs
has
calculated its [_|;__]< L;|< RNN 2 o 0
activations.

(L\ RNN 1

n

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

Y1 Yo Y3 I

! ! ro
At the same ‘ ‘ | ‘
time, the [/.8‘ [:]" H conca@nated U .B’
forward pass ~{] ~ | outputs
has
calculated its [_|;__]< L;|< RNN 2 o 0
activations.

(L\ NN 1

348] b

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

¥4 Yo Y3 i

I I N
At the same ‘ ‘ | ‘ ‘
time, the [/.8‘ [:]" H conca%nated U .B’
forward pass —~{] ~] outputs
has
calculated its [_|;__]< L;|< RNN 2 o 0
activations.

(L\ RNN

3 80 [¢

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

T T2 3 T .. T T
At the same ‘ ‘ | ‘ ‘ ‘

I
;[‘LT\Ae/é:Zepass ,.[U}] ’B‘ P’UU‘ Hcolc‘i%" tedH ’B‘

has

utz
calculated its [_|;__]< L;|< RNN 2 o 0

activations.
(L RNN 1—— [

" L

)

—

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional Recurrent Neural Networks (BRINN's)

The concatenated activations are passed to the next layer:

Y4 Y2 Y3 o Yn

1
5 &&=t b

-

i
X
et
7
N

[/
o

[L] RNN 1

H § ¢

QPO E] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Applications of (B)RINNs: Part of Speech Tagging

Map from sequence X,...,X, of words to yy,...,y, of POS tags

Y4 Yo Y3 Ya Ys

*oS oS

(Part of Speech Tagger)

| | | | |
Janet will back the bill

X X X X X

1 2 3 4 5

Applications of (B)RINNs: Part of Speech Tagging

Closed class vs. Open class words

= (Closed class words

* Relatively fixed membership, slow change over time
* Usually function words: short, frequent words with grammatical function
» determiners: a, an, the
* pronouns: she, he, I
* prepositions: on, under, over, near, by, ...
"= Open class words

» Change is more rapid, especially in age of social media
* Usually content words: Nouns, Verbs, Adjectives, Adverbs, Interjections, misc.
* Nouns: iPad, bro, meme, nothing-burger, tweet, ...
* Verbs: tweet, twerk, email, ...
* Interjections: oh, ouch, uh-huh, meh, whut, ...
» Abbreviations: URL, IP, WTAF, FFS, ETTD, ...
* Change in class: make nouns into verbs:
* Add -ing to anoun: Are you any good at keyboarding?
* Or skip the -ing: Do you even language, bro?

Applications of (B)RINNs: Part of Speech Tagging

Standard tags are from the Universal Tag Set:

Tag Description Example

ADJ Adjective: noun modifiers describing properties red, young, awesome
§ ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
O NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
é VERB words for actions and processes draw, provide, go
O PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado

INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

ADP Adposition (Preposition/Postposition): marks a noun’s in, on, by under
- spacial, temporal, or other relation
g AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
= CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
% DET Determiner: marks noun phrase properties a, an, the, this
O NUM Numeral one, two, first, second
Fc‘g PART Particle: a preposition-like form used together with a verb up, down, on, off, in, out, at, by
8 PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others

SCONJ Subordinating Conjunction: joins a main clause with a that, which

subordinate clause such as a sentential complement

5 PUNCT Punctuation 5,0
g SYM Symbols like $ or emoji $, %

X Other asdf, qwfg

Applications of (B)RINNs: Part of Speech Tagging

The Brown Corpus has tags for all its sentences:

In [5]: I ' '".join(brown.sents()[0])

Out[5]: "The Fulton County Grand Jury said Friday an investigation of Atlanta's r
ecent primary election produced ~~ no evidence that any irregularities
took place ."

In [11]: I 1lst = list(brown.tagged sents())
2 1st[0]

Out[11l]: [('The', 'AT'),
('Fulton', 'NP-TL'),
('County', 'NN-TL'),
('Grand', 'JJ-TL'),
('Jury', 'NN-TL'),
('said', 'VBD'),
('Friday', 'NR'),
('an', 'AT'),
('investigation', 'NN'),
('of', "IN"),
("Atlanta's", 'NP$'),
('recent', 'J3J3'"),
('primary', 'NN'),
('election', 'NN'),
('produced', 'VBD'),

Applications of (B)RINNs: Part of Speech Tagging

Part of Speech (POS) Tagging is an important step in many parts of NLP.

POS Tagging “involves identifying and labeling each word in a sentence with its
corresponding part of speech (such as nouns, verbs, adjectives, etc.), based on both

its definition and its context.”

Applications:

Grammar checking
Speech recognition
Search engines
Machine translation —
Named Entity Recognition
Text-to-speech and speech-to-text

c O o O O O O

Linguistic research and education

Contributors: Black text is from Chat GPT!

In all of these, POS
Tagging can assist in
resolving ambiguities in
word meaning and use.

Example:

Give me the book. (noun)
Book that flight. (verb)

Lead the way. (verb)
Lead is heavy. (noun)

Applications of (B)RINNs: Part of Speech Tagging

How difficult is POS tagging in English?

= Roughly 15% of word types are ambiguous

Hence 85% of word types are unambiguous

« Janetis always PROPN, hesitantly is always ADV
= But those 15% tend to be very common.

= So ~60% of word tokens are ambiguous
= E.g., back

earnings growth took a back/AD]J seat

a small building in the back/NOUN

a majority of senators back/VERB the bill
enable the country to buy back/PART debt
I was twenty-one back/ADV then

Types: WSJ Brown
Unambiguous (I tag) 44432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7.025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67 %)

QTR] Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

Applications of (B)RINNs: Part of Speech Tagging

Sources of information for POS tagging

Janet will back the bill
AUX/NOUN/VERB? NOUN/VERB?

* Prior probabilities of word/tag
« "will" is usually an AUX

= JIdentity of neighboring words
« "the" means the next word is probably not a verb
" Morphology and wordshape:

* Prefixes unable: un- - AD]J
= Suffixes importantly: -ly - AD]
= (Capitalization Janet: CAP — PROPN

Applications of (B)RINNs: Part of Speech Tagging
Standard algorithms for POS tagging

» Supervised Machine Learning Algorithms:
Hidden Markov Models

« Conditional Random Fields (CRF)/ Maximum Entropy Markov Models
(MEMM)

. Neural sequence models (RNNs or Transformers)
 Large Language Models (like BERT), finetuned

= All required a hand-labeled training set, all about equal performance (97% on
English)

= All make use of information sources we discussed
. Via human created features: HMMs and CRFs

Viarepresentation learning: Neural LMs

Applications of (B)RINNs: Part of Speech Tagging

Map from sequence Xj,...,X, of words to y,,...,y, of POS tags

Y4 Yo Y3 Ya Ys

*oS oS

(Part of Speech Tagger)

| | | | |
Janet will back the bill

X X X X X

1 2 3 4 5

Applications of (B)RINNs: Part of Speech Tagging

For each word in the sequence, the estimated tag is compared with the
actual tag label, and the log loss is added across the whole sequence; to
prevent longer sequences from having lower probabilities, we take the

average log loss per token:
Log loss: 0.01 + 0.003 + 0.023 + 0.005 + 0.04

= 0.081/5=0.0162

Argmax NNP MD VB DT NN
e (el (o

LT
= (g0

—A b 1)

Words Janet will back the bill

Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over

the part-of-speech tags as output at each time step.

Part of Speech Tagging with Hidden Markov Models

Hidden Markov Models are Markov Chains with observations and

emission probabilities. The states are considered to be unobservable or
“hidden.”

A=ay)...a;j...ayy atransition probability matrix A, each a;; representing the probability
of moving from state i to state j, s.t. Zl}lzl aij=1 Vi

0=0,0;...0r1 a sequence of T observations, each one drawn from a vocabulary V =
VI, V2., W

B =bi(o) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o, being generated
from a state g;

HICANUE UL UKy Callnul DT HILALD D>, AL, Z = =1

Q = {1 (Healthy), 2 (Fever)} O = {1 (Dizzy), 2(Cold), 3(Normal)}

7 = [0.6, 0.4] . \
) 1] 273
= Normal
A=[1]07]03 B=|1|01]|04]|05
210604 2106|03]0.1

Part of Speech Tagging with Hidden Markov Models

There are three main problems that are studied
with HMMs:

Evaluation problem. Given the HMM M=(A, B, r,0,B)
and the observation sequence 0410>... 0k, calculate
the probability that model M has generated the sequence.

Decoding problem. Given the HMM M=(A, B, r,0,B)
and the observation sequence 010;... 0k, calculate the
most likely sequence of hidden states s1, sy, ... sk, that
produced this observation sequence.

Learning problem. Given some training observation
sequences 0102... ok and general structure of HMM
(numbers of hidden and visible states), determine HMM
parameters M=(A, B, n,0,B) that best fit the training data
(alternately, determine some subset of the parameters,
the others being given).

Part of Speech Tagging with Hidden Markov Models

The decoding problem is used to do
POS/NER tagging:

From a training corpus of annotated
sentences, determine all the
parameters of an HMM model M:

Q = Parts of speech;

= = Probabilities that each POS
starts a sentence;

A = Observed probabilities of
bigrams P(p; | pi.4) for

parts of speech p; and p;.;.
O = Vocabulary

B = Observed probability of each
word being a

given POS in corpus.

B,
P("aardvark” | MD)

P(will" | MD)
P(the" | MD)

P("back” | MD)
P("zsbra” | MD)

P{"will" | VB)
P('the" | VB)

P("aardvark” | VB)

P(*aardvark | NN)
P("will" | NN)
P{"the” | NN)
P("back” | NN)
P("zsbra" | NN)

P{"back” | VB)
P("zebra" | VB)

An illustration of the two parts of an HMM representation: the A transition
probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

The Viterbi or Forward algorithm, based on a 2D trellis of possible hidden states at each
point in the sequence of observations, determines the most likely path, using dynamic

programming.

Janet “will back the "bil

A sketch of the lattice for Janet will back the bill, showing the possible tags (g;)
foreach word and highlighting the path corresponding to the correct tag sequence through the
hidden states. States (parts of speech) which have a zero probability of generating a particular
word according to the B matrix (such as the probability that a determiner DT will be realized
as Janet) are greyed out.

Viterbi Forward Algorithm to find most likely path:
Label first column with P(s;)*P(s, emits 0,);

For each columni=2 .. k:
For each state s; in previous column:
P(s;) = argmax; (P(s;) * P(s;.1->s;) * P(siemits o))) ;
Record path from s; in previous column to s;;

Trace back the path from the state with the highest
probability in the last column.

Applications of (B)RINNs: Part of Speech Tagging

POS tagging performance in English

* What 1s SOTA for accuracy of current approaches?
= About 97%

= Hasn't changed in the last 10+ years
= HMMs, CRFs, BERT perform similarly .

= Human accuracy about the same
" But baseline is 92%! So best methods only give 5% boost!

= Baseline is performance of stupidest possible method
= "Most frequent class baseline" is an important baseline for many tasks
= Tag every word with its most frequent tag
* (and tag unknown words as nouns)

= Partly easy because

= Many words are unambiguous

SOTA for POS ta

ging

Tables of results
wsJ
Extra All Unknown
System name Short description Main publication Software License
Data?*** tokens words
. Academic/research use only
TnT* Hidden Markov model Brants (2000) TnTe& No 96.46% || 85.86% ;
(licensed)
Maximum entropy Markov model with Alpage linguistic
MEIt X Py . Denis and Sagot (2009) pag 9 No 96.96% | 91.29% CeCILL-C
external lexical information workbench&
: Maximum entropy cyclic dependency 2) Gratis for non-commercial
GENIA Tagger™* Tsuruoka, et al (2005) GENIAZ No 97.05% || Not available
network usage
Averaged .) .
Averaged perceptron Collins (2002) Not available No 97.11% || Not available | Unknown
Perceptron
)) Maximum entropy bidirectional easiest-first)))
Maxent easiest-first | i Tsuruoka and Tsujii (2005) || Easiest-first& No 97.15% || Not available | Unknown
inference
Giménez and Marquez
SVMTool SVM-based tagger and tagger generator (2004) SVMTool& No 97.16% [89.01% LGPL 2.1
. Bidirectional LSTM-CRF with contextual X) .
Flair Akbik et al. (2018) Flaire? Yes 97.85% || Not available || MIT

string embeddings

Application of (B)RNNs: Named Entity Recognition

= A Named entity, in its core usage, means anything that can
be referred to with a proper name. Most common 4 tags:

* PER (Person): “Marie Curie”

= LOC (Location): “New York City”

* ORG (Organization): “Stanford University”

= GPE (Geo-Political Entity): "Boulder, Colorado”

= Often multi-word phrases

= But the term is also extended to things that aren't entities:

= dates, times, prices

Application of (B)RNNs: Named Entity Recognition

" The task of named entity recognition (NER):
* Find spans of text that constitute proper names

« Tag the type of the entity.

Citing high fuel prices, [prg United Airlines] said [T\g Friday] it
has increased fares by [\;ongy $6] per round trip on flights to some
cities also served by lower-cost carriers. [orG American Airlines], a
unit of [org AMR Corp.], immediately matched the move, spokesman
[ppr Tim Wagner] said. [prg United], a unit of [org UAL Corp.],
said the increase took effect [Ty Thursday] and applies to most
routes where it competes against discount carriers, such as [j oc Chicago]
to [[oc Dallas] and [; o Denver] to [; o San Francisco].

Application of (B)RNNs: Named Entity Recognition
Why NER?

= Sentiment analysis: consumer’s sentiment toward a particular
company Or person.
* Question Answering: answer questions about an entity.

= Information Extraction: Extracting facts about entities from text.

* Why is NER Hard?

= Segmentation
= In POS tagging, no segmentation problem since each word
gets one tag.
= In NER we have to find and segment the entities!

* Type ambiguity

[per Washington] was born into slavery on the farm of James Burroughs.
[org Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [[oc Washington] for what may well be his last state visit.
In June, [gpg Washington] passed a primary seatbelt law.

Application of (B)RNNs: Named Entity Recognition

How can we turn this structured problem into a sequence problem like POS
tagging, with one label per word?

Using BIO Tagging.

Words BIO Label
: - Jane B-PER
[PER Jane Villanueva] of [ORG United], Villanueva LPER
a unit of [ORG United Airlines Holding] , of o)
said the fare applies to the [LOC Chicago] United B-ORG
Airlines I-ORG
route. Holding I-ORG
discussed O
B: token that begins a span the 0]
Chicago B-LOC
|: tokens inside a span route O
O

O: tokens outside of any span

SOTA for NER Tagging

Named Entity Recognition on CoNLL 2003 (English)

Leaderboard

F1

96

94

92

Bi-LSTM-CNN

Jan '16

Dataset

Jul '16

Jan '17

TagLM

Jul '17

Jan'18

Flair embeddings
BiLSTM-CRF+ELMo

Jul '18

Other models

Jan '19

View F1 v| by

Date v for

All models

ACE + document-context

Cross-sentence context(Eirst)

Jul '19 Jan '20

Models with highest F1

Jul 20

Jan 21

Jul 21

Jan '22 Jul '22

Applications of RNNs: Generative Language Models

Recall: A Language Model assigns a probability to each sequence of words.
To teach an RNN a language model, we can train it on subsequences of

sentences:

Sentence: <s> so long and thanks for all the fish ! </s>

Break into equal-length subsequences (here 5, but typically longer)

<s> so long and thanks
so long and thanks for
long and thanks for all
and thanks for all the
thanks for all the fish
for all the fish !
all the fish ! </s>

Applications of RNNs: Generative Language Models

Then we train the network on inputs and outputs:

so long and thanks for

[1t 1 1
[N

<s> so long and thanks

long and thanks for all

Lt 1T 1T 1
[N

so long and thanks. for

Etc.

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

Recall: A Language Model assigns a probability to each sequence of words.
To teach an RNN a language model, we can add the log loss of each word
generated compared with an N-Gram model (there are more sophisticated
approaches).

Log loss: 0.021 + 0.0034 + 0.0023 +
/’Q //ﬂ //j
Sampled Word SO i long : and : ?
: : l
o () | Gl | o) | Gl
3 [3 [3 [3
} i |)
I I I
[RNN — = :
: 4 - 4 : L) J
| | I
Embedding : : :
LT
Input Word <s> | /So : /I’ong : and
l\// l\// I\//
Autoregressive generation with an RNN-based neural language model.

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

(SN
)

: fa [RNN [j] H
One Problem: The RNN makes local decisions about the oL
most likely next word. However, a series of such local - ? ; 3; ? ?
decisions will not necessarily find the globally most likely R R
sentence (cf. gradient descent, which has the same
problem).

The usual optimization is Beam Search:

1. Pick the “width of the beam” N (at each iteration, we will
store the N most likely sequences of words);

2. Generate a list of the N most likely words to start a

sentence, and concatenate them with <s>; Note:
: : : . _ sentences
3. At each iteration, examine ALL possible next words in the might be
sequence; toss all but the N most likely sequences; different
4. Repeat until </s> is generated. Return the most likely lengths;
sentence. stop when
sequence

ends in

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

Example of Beam Search with N = 2 using letters

instead of words:

AD

L A-END S
2 n / i
<START>

Sampled Word So/-E long | and ’i 2
(e Grr
Embedding ? E ? ? i ?
Input Word <s> i /'SO)I'ong ;lnd
b4 ABA Autoregressive generation with an RNN-based neural language model
/_w ABB
(e
S aa K 0.16
< -
_ ™ ABD R
\ <END>
4 ABE
AB-END
L, AEA Result:
<END>
/
/5 _w AEB 5 AED
= AEC &

N

L AEE
AE-END

Punchline: Beam search is not guaranteed to find the optimal sequence,
but as a heuiristic it works very well. There is an obvious
efficiency/performance tradeoff. Common values of N are 10, 100, 1000.

